SOLUTION —
Let $\sqrt{n}$ be a rational number.
$\therefore \quad \sqrt{n}=\frac{p}{q}$, where $p$ and $q$ are co-prime
Integers, $q \neq 0$
On squaring both sides, we get
$\Rightarrow \quad n=\frac{p^2}{q^2}$
$p^2=n q^2$ ........(i)
$\Rightarrow n$ divides $p^2$
[Let $p$ be a prime number. If $p$ divided $a^2$ then $p$ divides $a$, where $a$ is a positive integer]
$\Rightarrow n$ divides $p$ ........(ii)
Let $p=n m$, where $m$ is any integer.
$\Rightarrow \quad p^2=n^2 m^2$
$\Rightarrow \quad n^2 m^2=n q^2$
$\Rightarrow \quad q^2=n m^2$
$\Rightarrow n$ divides $q^2$
$\Rightarrow \quad n$ divided $q$ ........(iii)
[Let $p$ be a prime number. If $p$ divided $a^2$ then $p$ divides a where $a$ is a positive integer]
From (ii) and (iii), $n$ is a common factor of both $p$ and $q$ which contradicts the assumption that $p$ and $q$ are co-prime integer.
So, our supposition is wrong, $\sqrt{n}$ is an irrational number.