Solution :
समान्तर क्रम में, $\frac{1}{R^{\prime}}=\frac{1}{R_{1}}+\frac{1}{R_{2}} \Rightarrow \frac{1}{3}=\frac{1}{R_{1}}+\frac{1}{R_{2}} \Rightarrow 3\left(R_{1}+R_{2}\right)=R_{1} R_{2}$
$\Rightarrow 3 \times 16=R_{1} R_{2} \Rightarrow R_{1}=\frac{48}{R_{2}} \Omega$
श्रेणी क्रम में, $R^{\prime}=R_{1}+R_{2} \Rightarrow 16=R_{1}+R_{2} \Rightarrow \frac{48}{R_{2}}+R_{2}=16 \Omega$
$\Rightarrow R_{2}^{2}-16 R_{2}+48=0 \Rightarrow R_{2}^{2}-12 R_{2}-4 R_{2}+48=0$
$\Rightarrow R_{2}\left(R_{2}-12\right)-4\left(R_{2}-12\right)=0 \Rightarrow\left(R_{2}-12\right)\left(R_{2}-4\right)=20$
$\Rightarrow R_{2}=12$ या $4 \Omega \therefore R_{1}=4$ or $12 \Omega$