If $x_r=\cos \left(\frac{\pi}{2^r}\right)+i \sin \left(\frac{\pi}{2^r}\right)$, then $x_1 \cdot x_2 \ldots \ldots \infty$ is
100 views
0 Votes
0 Votes

If $x_r=\cos \left(\frac{\pi}{2^r}\right)+i \sin \left(\frac{\pi}{2^r}\right)$, then $x_1 \cdot x_2 \ldots \ldots \infty$ is

(A) -3

(B) -2

(C) -1

(D) 0

1 Answer

0 Votes
0 Votes
 
Best answer

SOLUTION —

$\therefore x_1 \cdot x_2 \cdot x_3 \ldots \ldots \infty$

$=\left(\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}\right)\left(\cos \frac{\pi}{2^2}+i \sin \frac{\pi}{2^2}\right) \ldots \infty$

$=\cos \left(\frac{\pi}{2}+\frac{\pi}{2^2}+\ldots \ldots\right)+i \sin \left(\frac{\pi}{2}+\frac{\pi}{2^2}+\ldots\right)$

$=\cos \left(\frac{\frac{\pi}{2}}{1-\frac{1}{2}}\right)+i \sin \left(\frac{\frac{\pi}{2}}{1-\frac{1}{2}}\right)$

$=\cos \pi+i \sin \pi=-1$

So, The correct option will be (C).

RELATED DOUBTS

1 Answer
0 Votes
0 Votes
83 Views
1 Answer
0 Votes
0 Votes
31 Views
1 Answer
0 Votes
0 Votes
54 Views
1 Answer
2 Votes
2 Votes
161 Views
Peddia is an Online Question and Answer Website, That Helps You To Prepare India's All States Boards & Competitive Exams Like IIT-JEE, NEET, AIIMS, AIPMT, SSC, BANKING, BSEB, UP Board, RBSE, HPBOSE, MPBSE, CBSE & Other General Exams.
If You Have Any Query/Suggestion Regarding This Website or Post, Please Contact Us On : [email protected]

CATEGORIES