SOLUTION —
$\lim _{x \rightarrow 0} \frac{a^x-b^x}{e^x-1} =\lim _{x \rightarrow 0} \frac{a^x-b^x}{x} \cdot \frac{x}{e^x-1}$
$=\lim _{x \rightarrow 0}\left[\frac{a^x-1}{x}-\frac{b^x-1}{x}\right] \frac{x}{e^x-1}$
$=\left[\lim _{x \rightarrow 0}\left(\frac{a^x-1}{x}\right)-\lim _{x \rightarrow 0}\left(\frac{b^x-1}{x}\right)\right] \lim _{x \rightarrow 0} \frac{1}{\frac{e^x-1}{x}}$
$=\left(\log _e a-\log _e b\right) \frac{1}{1}$
$ =\log _e\left(\frac{a}{b}\right)$
So, The correct option will be (A).