SOLUTION —
Given equation $\frac{\alpha}{x-\alpha}+\frac{\beta}{x-\beta}=1$ can be rewritten as
$x^2-2(\alpha+\beta) x+3 \alpha \beta=0$
Let roots be $\alpha^{\prime}$ and $-\alpha^{\prime}$.
$\therefore \quad \alpha^{\prime}+\left(-\alpha^{\prime}\right)=2(\alpha+\beta) \Rightarrow \alpha+\beta=0$
So, The correct option will be (A).