If $f(x)=\log _x\left(\log _e x\right)$, then $f^{\prime}(x)$ at $x=e$ is equal to
37 views
0 Votes
0 Votes

If $f(x)=\log _x\left(\log _e x\right)$, then $f^{\prime}(x)$ at $x=e$ is equal to

(A) 1

(B) 2

(C) 0

(D) $\frac{1}{e}$

1 Answer

0 Votes
0 Votes
 
Best answer

SOLUTION —

$f(x)=\log _x\left(\log _e x\right)=\frac{\log _e \log _e x}{\log _e x}$

$\begin{aligned}\Rightarrow \quad f^{\prime}(x) & =\frac{\log _e x \cdot \frac{1}{\log _e x} \cdot \frac{1}{x}-\log _e \log _e x \cdot \frac{1}{x}}{\left(\log _e x\right)^2} \\\Rightarrow \quad f^{\prime}(x) & =\frac{1-\log _e \log _e x}{x\left(\log _e x\right)^2} \\\Rightarrow \quad f^{\prime}(e) & =\frac{1-\log _e \log _e e}{e\left(\log _e e\right)^2} \\& =\frac{1-\log _e 1}{e}=\frac{1}{e}\end{aligned}$

So, The correct option will be (D).

RELATED DOUBTS

1 Answer
0 Votes
0 Votes
31 Views
1 Answer
0 Votes
0 Votes
47 Views
1 Answer
0 Votes
0 Votes
52 Views
1 Answer
0 Votes
0 Votes
72 Views
Peddia is an Online Question and Answer Website, That Helps You To Prepare India's All States Boards & Competitive Exams Like IIT-JEE, NEET, AIIMS, AIPMT, SSC, BANKING, BSEB, UP Board, RBSE, HPBOSE, MPBSE, CBSE & Other General Exams.
If You Have Any Query/Suggestion Regarding This Website or Post, Please Contact Us On : [email protected]

CATEGORIES