SOLUTION —
$\because(1+x)^n=C_0+C_1 x+C_2 x^2+\ldots+C_r x^r+\ldots$
and $\left(1+\frac{1}{x}\right)^n=C_0+C_1 \frac{1}{x}+C_2 \frac{1}{x^2}+\ldots C_{r+1} \frac{1}{x^{r+1}}$$+C_{r+2} \frac{1}{x^{r+2}} \ldots C_n \frac{1}{x^n}$
Multiplying Eqs. (i) and (ii) and equating coefficient of $x^r$ in $\frac{1}{x^n}(1+x)^{2 n}$ or the coefficient of $x^{n+r}$ in $(1+x)^{2 n}$, we get the value of required expression
$={ }^{2 n} C_{n+r}=\frac{(2 n) !}{(n-r) !(n+r) !}$
So, The correct option will be (A).