If z is a complex number, then $\left.\overline{\left(z^{-1}\right.}\right)(z)$ is equal to
82 Views
0 Votes

If $z$ is a complex number, then $\left.\overline{\left(z^{-1}\right.}\right)(z)$ is equal to

(A) 1

(B) -1

(C) 0

(D) None of these

1 Answer

0 Votes
 
Best answer

SOLUTION —

Let $z=x+i y \Rightarrow \bar{z}=x-i y$ and

$\Rightarrow \overline{\left(z^{-1}\right)}=\frac{1}{x-t y}=\frac{x+i y}{x^2+y^2}$

$\therefore \quad \overline{\left(z^{-1}\right)} \bar{z}=\frac{x+i y}{x^2+y^2} \times(x-i y)=1$

So, The correct option will be (A).

RELATED DOUBTS

1 Answer
0 Votes
110 Views
Asked May 5, 2023 34 Views
KrAnkitYdv Asked May 5, 2023
1 Answer
0 Votes
34 Views
Asked May 4, 2023 24 Views
KrAnkitYdv Asked May 4, 2023
1 Answer
0 Votes
24 Views
1 Answer
0 Votes
27 Views
Asked May 4, 2023 22 Views
KrAnkitYdv Asked May 4, 2023
1 Answer
0 Votes
22 Views
Asked May 4, 2023 23 Views
KrAnkitYdv Asked May 4, 2023
1 Answer
0 Votes
23 Views
1 Answer
0 Votes
16 Views
Peddia is an Online Question and Answer Website, That Helps You To Prepare India's All States Boards & Competitive Exams Like IIT-JEE, NEET, AIIMS, AIPMT, SSC, BANKING, BSEB, UP Board, RBSE, HPBOSE, MPBSE, CBSE & Other General Exams.
If You Have Any Query/Suggestion Regarding This Website or Post, Please Contact Us On : [email protected]
Total Visitors :

CATEGORIES