SOLUTION —
Let $z=x+i y \Rightarrow \bar{z}=x-i y$ and
$\Rightarrow \overline{\left(z^{-1}\right)}=\frac{1}{x-t y}=\frac{x+i y}{x^2+y^2}$
$\therefore \quad \overline{\left(z^{-1}\right)} \bar{z}=\frac{x+i y}{x^2+y^2} \times(x-i y)=1$
So, The correct option will be (A).