Find the range of the following functions : where (.) and (.) represent fractional part and greatest integer part functions respectively)
207 views
0 Votes
0 Votes

Find the range of the following functions : where (.) and (.) represent fractional part and greatest integer part functions respectively)

(i) $\quad f(x)=1-|x-2|$

(ii). $f(x)=\frac{1}{\sqrt{16-4^{x^2-x}}}$

(iii) $f(x)=\frac{1}{2-\cos 3 x}$

(v) $\quad f(x)=\frac{x+2}{x^2-8 x-4}$

(v) $\quad f(x)=\frac{x^2-2 x+4}{x^2+2 x+4}$

(vi) $\quad f(x)=3 \sin \sqrt{\frac{\pi^2}{16}-x^2}$

(vii) $\quad f(x)=x^4-2 x^2+5$

(viii) $\quad f(x)=x^3-12 x$, where $x \in[-3,1]$

(ix) $\quad f(x)=\sin ^2 x+\cos ^4 x$

(x) $f(x)=[\sin x+[\cos x+[\tan x+[\sec x]]]]$ Here $x \in(0, \pi / 4)$

(xi) $\quad f(x)=\sec ^2 x-\tan ^2 x+\sin (\sin x+\cos x)$

1 Answer

0 Votes
0 Votes
 
Best answer

SOLUTION : (i) $f(x)=1-|x-2| \quad \Rightarrow \quad|x-2| \in[0, \infty) \quad \therefore \quad f(x) \in(-\infty, 1]$

(ii) $\quad f(x)=\frac{1}{\sqrt{16-4^{x^2-x}}} \quad$ for function to be defined

$\begin{array}{lll}16-4^{x^2-x}>0 & \Rightarrow & 16>4^{x^2-x} \\ x^2-x-2<0 & \Rightarrow \quad(x-2)(x+1)<0\end{array} \quad \Rightarrow \quad 4^{x^1-x<4^2}$

so $n \in(-1,2) \quad \Rightarrow \quad n \in(-1,2) \quad \Rightarrow \quad x^2-x \in\left[-\frac{1}{4}, 2\right]$

$4^{x^2-x} \in\left[\frac{1}{\sqrt{2}}, 16\right) \quad \Rightarrow \quad \sqrt{16-4^{x^2-x}} \in\left(0, \sqrt{16-\frac{1}{\sqrt{2}}}\right]$

So range of $\frac{1}{\sqrt{16-4^{x^2-x}}} \in\left[\frac{1}{\sqrt{16-\frac{1}{\sqrt{2}}}}, \infty\right]$

(iii) $f(x)=\frac{1}{2-\cos 3 x} \quad$ range of $\cos 3 x$ is $[-1,1] \quad \cos 3 x[-1,1]$

$\therefore \quad f(x) \in\left[\frac{1}{3}, 1\right]$

(iv) $f(x)=\frac{x+2}{x^2-8 x-4}=y \quad \Rightarrow \quad x+2=y x^2-8 y x-4 y \\$

$\text { or } \quad y x^2-x(8 y+1)-(4 y+2)=0 \\$

$\text { for } x \text { to be real } D \geq 0 \\$

$(8 y+1)^2+4 y(4 y+2) \geq 0 \quad \Rightarrow \quad 64 y^2+16 y+1+16 y^2+8 y \geq 0 \\$

$80 y^2+24 y+1 \geq 0$

$y \in\left(-\infty,-\frac{1}{4}\right] \cup\left[-\frac{1}{20}, \infty\right)$

(v) $f(x)=\frac{x^2-2 x+4}{x^2+2 x+4}=y \Rightarrow x^2-2 x+4=y x^2+2 x y+4 y \\$

$x^2(1-y)-2 x(1+y)+4(1-y)=0 \\$

$D \geq 0$

$4(1+y)^2-16(1-y)^2 \geq 0 \quad \text { or } \quad y \in\left[\frac{1}{3}, 3\right]$

(vi) $f(x)=3 \sin \sqrt{\frac{\pi^2}{16}-x^2} \Rightarrow D: x \in\left[-\frac{\pi}{4}, \frac{\pi}{4}\right] \quad \Rightarrow \quad \sqrt{\frac{\pi^2}{16}-x^2} \in\left[0, \frac{\pi}{4}\right]$

$\therefore \quad f(x) \in\left[0, \frac{3}{\sqrt{2}}\right]$

(vii) $f(x)=x^3-2 x^2+5=\left(x^2-1\right)^2+4 \quad \Rightarrow \quad R:[4, \infty)$

(viii) $\quad f(x)=x^3-12 x, x \in[-3,1]=x\left(x^2-12\right) \Rightarrow f^{\prime}(x)=3 x^2-12=0$ or $\quad x= \pm 2$

$\mathrm{R}:[-11,16]$

(ix) $\quad f(x)=\sin ^2 x+\cos ^4 x=\sin ^2 x+1+\sin ^4 x-2 \sin ^2 x=\sin ^4 x-\sin ^2 x+1=\left(\sin ^2 x-\frac{1}{2}\right)+\frac{3}{4}$

$R:\left[\frac{3}{4}, 1\right]$.

$f(x)=[\sin x]+[\tan x]+[\cos x]+[\sec x] \\$

$\because x \in(0, \pi / 4) \Rightarrow \sin x \in\left(0, \frac{1}{\sqrt{2}}\right) \Rightarrow[\sin x]=0$ 

$\Rightarrow \cos x \in\left(\frac{1}{\sqrt{2}}, 1\right) \Rightarrow[\cos x]=0 \\$

$\tan x \in(0,1) \Rightarrow[\tan x]=0 \Rightarrow \sec x \in(1, \sqrt{2}) \Rightarrow[\sec x]=1 \\$

$\text { Range of } f(x)=\{1\}$

(xi) Domain is $R-(2 n+1) \frac{\pi}{2}$ and $-\sqrt{2} \leq \sin x+\cos x \leq \sqrt{2} \cdot \sin (\sin x+\cos$

 (x) $\neq \pm \sin 1$ But these values will come at $x=0, \pi$ so cannot be excluded. 

RELATED DOUBTS

1 Answer
0 Votes
0 Votes
90 Views
1 Answer
0 Votes
0 Votes
117 Views
1 Answer
0 Votes
0 Votes
83 Views
Peddia is an Online Question and Answer Website, That Helps You To Prepare India's All States Boards & Competitive Exams Like IIT-JEE, NEET, AIIMS, AIPMT, SSC, BANKING, BSEB, UP Board, RBSE, HPBOSE, MPBSE, CBSE & Other General Exams.
If You Have Any Query/Suggestion Regarding This Website or Post, Please Contact Us On : [email protected]

CATEGORIES