Find domain of the following functions
89 views
0 Votes
0 Votes
Find domain of the following functions

(i) $f(x)=\sqrt{\log _{1 / 3} \log _4\left([x]^2-5\right)}$, where [.] denotes greatest integer function.

(ii) $\quad f(x)=\frac{1}{[|x-1|]+[|12-x|]-11}$, where $[x]$ denotes the greatest integer not greater than $x$.

(iii) $\quad f(x)=(x+0.5)^{\log _{(0.5+x)} \frac{x^2+2 x-3}{4 x^2-4 x-3}}$

(iv) $f(x)=\frac{5}{\left[\frac{x-1}{2}\right]}-3^{\sin ^{-1} x^2}+\frac{(7 x+1) !}{\sqrt{x+1}}$, where [.] denotes greatest integer function.

(v). $\quad 3^y+2^{x^4}=2^{4 x^2-1}$

1 Answer

0 Votes
0 Votes

SOLUTION : (i) $\sqrt{\log _{1 / 3} \log _4\left([x]^2-5\right)}$

Domain

(i) $\quad \log _{1 / 3} \log _4\left([x]^2-5\right) \geq 0$ or $\log _4\left([x]^2-5\right) \leq 1$

or $[x]^2 \leq 9 \quad$ or $\quad x \in[-3,4)$

(ii) $\quad \log _4\left([x]^2-5\right)>0$

or $[x]^2-5>1$

or $\quad x \in(-\infty,-2) \cup[3, \infty)$

(iii) ${[x]^2-5>0} \\$

$x \in(-\infty,-2) \cup[3, \infty) \\$

$\text { Now }(i) \cap(i i) \cap(\text { iii }) \\$

$\Rightarrow \quad x \in[-3,2) \cup[3,4)$

(ii) $\quad f(x)=\frac{1}{[|x-1|]+[|12-x|]-11}$

Case-I $x>12$

$f(x)=\frac{1}{[x]-1+[x]-12-11} \quad \Rightarrow \quad f(x)=\frac{1}{2([x]-12)}$

Now for $f(x)$ to be defined $[x] \neq 12 \quad \Rightarrow \quad x \notin[12,13) \quad$ but $x>12$

$x \notin(12,13)$

Case-II $1 \leq x \leq 12$

$f(x)=$\frac{1}{[x]-1+12+[-x]-11}=\left\\{ll}$

$\frac{1}{[x]+(-1-[x])}  \text { if } x \in I \\$

$\text { not defined }  \text { if } x \in I$

$\Rightarrow \quad x \notin\{1,2,3,4,5,6,7,8,9,10,11,12\}$

Case-III

x<1

$f(x)=\frac{1}{1+[-x]+[-x]+12-11} \\$

$f(x)=\left\$

$\frac{1}{2(1-[x])} \text { if } x \in I \\$

$\frac{1}{-2[x]} \text { if } x \notin I$

$\{\quad \Rightarrow \quad x \notin(0,1) \quad \because \quad x<1\right}$

(iii) $\quad f(x)=(x+0.5)^{\log _{(0.5+x)} \frac{x^2+2 x-3}{4 x^2-4 x-3}}$

$x+0.5>0, x+0.5 \neq 1 \quad \Rightarrow \quad x \in(-0.5, \infty) \ x \neq 0.5$

$ $\frac{x^2+2 x-3}{4 x^2-4 x-3}>0$ or $\frac{(x+3)(x-1)}{(2 x-3)(2 x+1)}>0$

$\text { or } \quad x \in(-\infty,-3) \cup\left(-\frac{1}{2}, 1\right) \cup\left(\frac{3}{2}, \infty\right)$

$(A) \cap(B) \therefore$ Domain of $f(x): x \in\left(-\frac{1}{2}, 1\right) \cup\left(\frac{3}{2}, \infty\right)-\left\{\frac{1}{2}\right\}$

(iv) $f(x)=\frac{5}{\left[\frac{x-1}{2}\right]}-3^{\sin ^{-1} x^2}+\frac{(7 x+1) !}{\sqrt{x+1}}$

${\left[\frac{x-1}{2}\right] \neq 0 \quad \Rightarrow \quad x \notin[1,3)} \\$

$\text { \& } \quad x \in[-1,1] \\$

$\text { \& } \quad x+1>0 \quad \Rightarrow \quad x \in(-1, \infty) \\$

$\text { \& } 7 x+1 \in W \\$

$\therefore \quad \text { Domain }\left\{-\frac{1}{7}, 0, \frac{1}{7}, \frac{2}{7}, \frac{3}{7}, \frac{4}{7}, \frac{5}{7}, \frac{6}{7}\right\} \\$

(v) $3^y=2^{4 x^2-1}-2^{x^4}>0 \\$

$4 x^2-1>x^4 \quad \Rightarrow \quad\left(x^2\right)^2-4 x^2+1<0 \\$

$\left(x^2-2\right)^2+1-4<0 \\$

$\sqrt{2-\sqrt{3}}<|x|<\sqrt{2+\sqrt{3}} \\$

$x \in(-\sqrt{2+\sqrt{3}},-\sqrt{2-\sqrt{3}}) \cup(\sqrt{2-\sqrt{3}}, \sqrt{2+\sqrt{3}}) \\$

$x \in\left(\frac{-\sqrt{3}-1}{\sqrt{2}}, \frac{-\sqrt{3}+1}{\sqrt{2}}\right) \cup\left(\frac{\sqrt{3}-1}{\sqrt{2}}, \frac{\sqrt{3}+1}{\sqrt{2}}\right)$

RELATED DOUBTS

1 Answer
0 Votes
0 Votes
116 Views
Peddia is an Online Question and Answer Website, That Helps You To Prepare India's All States Boards & Competitive Exams Like IIT-JEE, NEET, AIIMS, AIPMT, SSC, BANKING, BSEB, UP Board, RBSE, HPBOSE, MPBSE, CBSE & Other General Exams.
If You Have Any Query/Suggestion Regarding This Website or Post, Please Contact Us On : [email protected]

CATEGORIES